Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate

نویسندگان

  • G. Herink
  • B. Jalali
  • C. Ropers
  • D. R. Solli
چکیده

Mode-locked lasers have enabled some of the most precise measurements ever performed, from attosecond time-domain spectroscopy to metrology with frequency combs. However, such extreme precision belies the complexity of the underlying mode-locking dynamics. This complexity is particularly evident in the emergence of the mode-locked state, an intrinsically singular, non-repetitive transition. Many details of mode-locking are well understood, yet conventional spectroscopy cannot resolve the nascent dynamics in passive mode-locking on their natural nanosecond timescale, the single pulse period. Here, we capture the pulse-resolved spectral evolution of a femtosecond pulse train from the initial fluctuations, recording ∼900,000 consecutive periods. We directly observe critical phenomena on timescales from tens to thousands of roundtrips, including the birth of the broadband spectrum, accompanying wavelength shifts and transient interference dynamics described as auxiliary-pulse mode-locking. Enabled by the time-stretch transform, the results may impact laser design, ultrafast diagnostics and nonlinear optics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated...

متن کامل

Period doubling of a femtosecond Ti:sapphire laser by total mode locking.

Period doubling of an 84-MHz repetition-rate Kerr-lens mode-locked Ti:sapphire laser operated at 830 nm and producing ~300mW of average power has been observed and explained in terms of total mode locking of TEM(00) and TEM(01) modes in an effective confocal cavity. This configuration leads to a spatial sweeping action of a single-peaked pulse at 42 MHz. Period tripling and quadrupling is obser...

متن کامل

Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm.

Femtosecond mode locking of a Tm-doped Lu2O3 ceramic laser is reported. Transform-limited pulses as short as 180 fs are generated at 2076 nm with an average output power of 400 mW and a pulse repetition frequency of 121.2 MHz. An output power up to 750 mW can be reached at the somewhat longer pulse duration of 382 fs. Femtosecond pulse generation is realized in the 2030-2100 nm spectral range. ...

متن کامل

Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy.

A Kerr-lens mode-locked femtosecond Ti:sapphire laser operating at a repetition rate of 2 GHz is demonstrated. A mirror-dispersion-controlled unidirectional ring cavity delivers nearly bandwidth-limited pulses of 23-fs length. Mode locking is self-starting without a hard aperture in the cavity. The advantages of this high-repetition-rate oscillator in optical time-resolved spectroscopy are demo...

متن کامل

Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking.

We have used injection locking to multiply the repetition rate of a passively mode-locked femtosecond fiber laser from 40 MHz to 1 GHz while preserving optical phase coherence between the master laser and the slave output. The system is implemented almost completely in fiber and incorporates gain and passive saturable absorption. The slave repetition rate is set to a rational harmonic of the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016